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Abstract

We present an expository, general analysis of valid post-selection or
post-regularization inference about a low-dimensional target parame-
ter in the presence of a very high-dimensional nuisance parameter that
is estimated using selection or regularization methods. Our analysis
provides a set of high-level conditions under which inference for the
low-dimensional parameter based on testing or point estimation meth-
ods will be regular despite selection or regularization biases occurring in
the estimation of the high-dimensional nuisance parameter. A key ele-
ment is the use of so-called immunized or orthogonal estimating equa-
tions that are locally insensitive to small mistakes in the estimation of
the high-dimensional nuisance parameter. As an illustration, we ana-
lyze affine-quadratic models and specialize these results to a linear
instrumental variables model with many regressors and many instruments.
We conclude with a review of other developments in post-selection infer-
ence and note that many can be viewed as special cases of the general
encompassing framework of orthogonal estimating equations provided
in this article.
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1. INTRODUCTION

Analysis of high-dimensional models, models in which the number of parameters to be esti-
mated is large relative to the sample size, is becoming increasingly important. Such models
arise naturally in readily available high-dimensional data, which have many measured char-
acteristics available per individual observation, as in, for example, large survey data sets,
scanner data, and text data. Such models also arise naturally even in data with a small number
of measured characteristics in situations where the exact functional form with which the
observed variables enter the model is unknown. Examples of this scenario include semi-
parametric models with nonparametric nuisance functions. More generally, models with
many parameters relative to the sample size often arise when attempting to model complex
phenomena.

The key concept underlying the analysis of high-dimensional models is that regularization,
such as model selection or shrinkage of model parameters, is necessary if one is to draw meaningful
conclusions from the data. For example, the need for regularization is obvious in a linear re-
gression model with the number of right-hand-side variables greater than the sample size but arises
far more generally in any setting in which the number of parameters is not small relative to the
sample size. Given the importance of the use of regularization in analyzing high-dimensional
models, it is then important to explicitly account for the impact of this regularization on the be-
havior of estimators if one wishes to accurately characterize their finite-sample behavior. The use
of such regularization techniques may easily invalidate conventional approaches to inference
about model parameters and other interesting target parameters. A major goal of this article is
to present a general, formal framework that provides guidance about setting up estimating
equations and making appropriate use of regularization devices so that inference about param-
eters of interest will remain valid in the presence of data-dependent model selection or other
approaches to regularization.

It is important to note that understanding estimators’ behavior in high-dimensional settings
is also useful in conventional low-dimensional settings. As noted above, dealing formally with
high-dimensional models requires that one explicitly account for model selection or other forms
of regularization. Providing results that explicitly account for this regularization then allows us
to accommodate and coherently account for the fact that low-dimensional models estimated in
practice are often the result of specification searches. As in the high-dimensional setting, failure
to account for this variable selection will invalidate the usual inference procedures, whereas the
approach that we outline will remain valid and can easily be applied in conventional low-
dimensional settings.

The chief goal of this article is to offer a general framework that encompasses many existing
results regarding inference on model parameters in high-dimensional models. The encompassing
framework we present and the key theoretical results are new, although they are clearly heavily
influenced and foreshadowed by previous, more specialized results. As an application of the
framework, we also present new results on inference in a reasonably broad class of models, termed
affine-quadratic models, that includes the usual linear model and linear instrumental variables
(IV) model and then apply these results to provide new ones regarding post-regularization in-
ference on the parameters on endogenous variables in a linear IV model with very many instru-
ments and controls (and also allowing for some misspecification). We also provide a discussion of
previous research that aims to highlight that many existing results fall within the general
framework.

Formally, we present a series of results for obtaining valid inferential statements about a low-
dimensional parameter of interest, a, in the presence of a high-dimensional nuisance parameter, 7.
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The general approach we offer relies on two fundamental elements. First, it is important that
estimating equations used to draw inferences about « satisfy a key orthogonality or immunization
condition." For example, when estimation and inference for « are based on the empirical analog
of a theoretical system of equations

M(a, 1) =0,

we show that setting up the equations in a manner such that the orthogonality or immunization
condition

0,M(a,m) = 0

holdsis an importantelementin providing an inferential procedure for « that remains valid when 7
is estimated using regularization. We note that this condition can generally be established. For
example, we can apply Neyman’s classic orthogonalized score in likelihood settings (see, e.g.,
Neyman 1959, 1979). We also describe an extension of this classic approach to the generalized
method of moments (GMM) setting. In general, applying this orthogonalization will introduce
additional nuisance parameters that will be treated as part of 1.

Second, it is important to use high-quality, structured estimators of 7. Crucially, additional
structure on 7 is needed for informative inference to proceed, and it is thus important to use
estimation strategies that leverage and perform well under the desired structure. An example of
a structure that has been usefully employed in the recent literature is approximate sparsity (e.g.,
Belloni et al. 2012). Within this framework, 1 is well approximated by a sparse vector, which
suggests the use of a sparse estimator such as the Lasso (Frank & Friedman 1993, Tibshirani
1996). The Lasso estimator solves the general problem

bl

p
;= arg mnin {(data, 1) + )\Z"ﬂmf
=1

where ¢(data, 1) is some general loss function that depends on the data and the parameter 7, A is
a penalty level, and ¢;’s are penalty loadings. The choice of the regularization parameter A is an
important issue. We provide some discussion of this issue in the context of the linear model in
Appendix A (see also, e.g., Belloni & Chernozhukov 2011 for additional detailed discussion). The
leading example is the usual linear model in which ¢(data, n) = ZLI (yi — xim)* is the usual least-
squares loss, with y; denoting the outcome of interest for observation i and x; denoting predictor
variables, and we provide further discussion of this example in Appendix A. Other examples of
£(data, n) include suitable loss functions corresponding to well-known M-estimators, the negative
of the log-likelihood, and GMM criterion functions. This estimator and related methods, such as
those in Candeés & Tao (2007), Meinshausen & Yu (2009), Bickel et al. (2009), Belloni &
Chernozhukov (2013), and Belloni et al. (2011), are computationally efficient and have been
shown to have good estimation properties even when perfect variable selection is not feasible under
approximate sparsity. These good estimation properties then translate into providing good-
enough estimates of 7 to result in valid inference about @ when coupled with orthogonal estimating
equations, as discussed above. Finally, it is important to note that the general results we present do
not require or leverage approximate sparsity or sparsity-based estimation strategies. We provide

We refer to the condition as an orthogonality or immunization condition, as orthogonality is a much-used term and our usage
differs from some other usage in defining orthogonality conditions used in econometrics.
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this discussion here simply as an example and because the structure offers one concrete setting in
which the general results we establish may be applied.

In the remainder of this article, we present the main results. In Sections 2 and 3, we provide our
general set of results that may be used to establish uniform validity of inference about low-
dimensional parameters of interest in the presence of high-dimensional nuisance parameters.
We provide the framework in Section 2 and then discuss how to achieve the key orthogonality
condition in Section 3. In Sections 4 and 5, we provide details about establishing the necessary
results for the estimation quality of  within the approximately sparse framework. The analysis
in Section 4 pertains to a reasonably general class of affine-quadratic models, and the analysis of
Section 5 specializes this result to the case of estimating the parameters on a vector of en-
dogenous variables in a linear IV model with very many potential control variables and very
many potential instruments. The analysis in Section 5 thus extends results from Belloni et al.
(2012,2014a). We also provide a brief simulation example and an empirical example thatlooks
at logit demand estimation within the linear many instrument and many control setting in
Section 5. We conclude with a literature review in Section 6.

With regard to notation, we use wp — 1 to abbreviate the phrase “with probability that con-
verges to 1,” and we use the arrows —p, and wp, to denote convergence in probability and in
distribution under the sequence of probability measures {P,;}. The symbol ~ means distributed as.
The notation a < b means thata = O(b),and a <p,b means thata = Op, (b). The ¢, and ¢ norms are
denoted by -] and ||-||;, respectively, and the £y norm, ||-||,, denotes the number of nonzero com-
ponents of a vector. When applied to a matrix, ||-|| denotes the operator norm. We use the notation
a\/ b = max(a,b) and a A b = min(a, b). Here and below, E,[-] abbreviates the average nflz?: , L]
over index i. That is, ,[f (2;)] denotes 7! ZL | [f (wi)]. In what follows, we use the 2-sparse norm
of a matrix QO defined as

2
1Oy = sup{ [6'Q /151 [blly <, 6] 0.
We also consider the pointwise norm of a square matrix Q at a point x # 0:
2
1QMlow(x) = [ Qxx] /lIxII".

For a differentiable map x+ f(x), mapping R? to R¥, we use oyf to abbreviate the partial
derivatives (d/0x’)f, and we correspondingly use the expression dy f (xo) to mean oy f (x)|,_,, , etc.
We use x’ to denote the transpose of a column vector x.

2. A TESTING AND ESTIMATION APPROACH TO VALID POST-SELECTION
AND POST-REGULARIZATION INFERENCE

2.1. The Setting

We assume that estimation is based on the first 7 elements (0;,,)?_, of the stationary data stream
(win);2,, which lives on the probability space (Q,A,P,). The data points w;, take values in
a measurable space W for each i and n. Here, P, the probability law or data-generating process,
can change with 7. We allow the law to change with 7 to claim robustness or uniform validity of
results with respect to perturbations of such laws. Thus, the data, all parameters, estimators, and
other quantities are indexed by 7, but we typically suppress this dependence to simplify notation.
The target parameter value « = ay is assumed to solve the system of theoretical equations
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M(O[, 7’0) = Os

whereM = (M,);E:1 is a measurable map from A X H to R*, and A X H are some convex subsets of
R? X RP. Here the dimension d of the target parameter a € A and the number of equations k are
assumed to be fixed, and the dimension p = p,, of the nuisance parameter n € H is allowed to be
very high, potentially much larger than 7. To handle the high-dimensional nuisance parameter 7,
we employ structured assumptions and selection or regularization methods appropriate for the
structure to estimate 7.

Given an appropriate estimator ), we can construct an estimator & as an approximate solution
to the estimating equation:

] = ] o 72),
acA

where M = (M;)f: | is the empirical analog of theoretical equations M, which is a measurable
map from W* X AX H to R¥. We can also use M(a, 7)) to test hypotheses about ay and then
invert the tests to construct confidence sets.

It is not required in the formulation above, but a typical case is when M and M are formed as
theoretical and empirical moment functions:

M(as 71) =E [d’(wis a, 7’)} 5 M(as 77) =E, [lll(wia «a, 77)] 5

where i = (1//,);11 is a measurable map from WX AX H to R*. Of course, there are many

problems that do not fall in the moment condition framework. As illustrations of the general
conditions we will provide, we show how our general conditions can be verified in the context of
affine-quadratic models and use these results to give primitive conditions in the linear IV model
with many instruments and many controls in Sections 4 and 5.

2.2. Valid Inference via Testing

A simple introduction to the inferential problem is via the testing problem in which we would like
to test some hypothesis about the true parameter value «g. By inverting the test, we create
a confidence set for a. The key condition for the validity of this confidence region is adaptivity,
which can be ensured by using orthogonal estimating equations and using structured assumptions
on the high-dimensional nuisance parameter.”

The key condition enabling us to perform valid inference on «y is the adaptivity condition:

W(M(ao,ﬁ) *M(ao,no)) —p, 0. (1)

This condition states that using /zZM(ag, 7)) is as good as using v/zZM(ao, 1), at least to the first
order. This condition may hold despite using estimators 7 that are not asymptotically linear and
are nonregular. Verification of adaptivity may involve substantial work, as illustrated below. A
key requirement that often arises is the orthogonality or immunization condition:

0 M(at0, 7m9) = . 2)

This condition states that the equations are locally insensitive to small perturbations of the nui-
sance parameter around the true parameter values. In several important models, this condition is

2Readers are referred to Bickel (1982) for a definition of and introduction to adaptivity.
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equivalent to the double-robustness condition (Robins & Rotnitzky 1995). Additional assump-
tions regarding the quality of estimation of 7, are also needed and are highlighted below.

The adaptivity condition immediately allows us to use the statistic \/zM(ag, ) to perform
inference. Indeed, suppose we have that

Q7 (o) vnM(ag, mg) w2, N (0, 1) (3)

for some positive-definite Q(a) = Var(\/ﬁM(a, 10) ) This condition can be verified using central
limit theorems for triangular arrays. Such theorems are available for independently and identically
distributed (i.i.d.) as well as dependent and clustered data. Suppose further that there exists Q(a)
such that

Q72 (20) 0 (arg) —p, I (4)

It is then immediate that the following score statistic, evaluated at @ = «y, is asymptotically normal,

~1/2 S
S(a)=0Q, " (a)VnM(a, 0) »p, N'(0, ), (%)
and that the quadratic form of this score statistic is asymptotically x> with k degrees of freedom:
Claxo) = [|S(@0)||” v, X (k). (6)

The statistic given in Equation 6 simply corresponds to a quadratic form in appropriately
normalized statistics that have the desired immunization or orthogonality condition. We refer to
this statistic as a generalized C(a)-statistic in honor of Neyman’s fundamental contributions (e.g.,
Neyman 1959, 1979) because, in likelihood settings, the statistic in Equation 6 reduces to
Neyman’s C(a)-statistic and the generalized score S(a) given in Equation 5 reduces to Neyman’s
orthogonalized score. We demonstrate these relationships in the special case of likelihood models
in Section 3.1 and provide a generalization to GMM models in Section 3.2. Both these examples
serve to illustrate the construction of appropriate statistics in different settings, but we note that the
framework applies far more generally.

The following elementary result is an immediate consequence of the preceding discussion.

Proposition 1 (valid inference after selection or regularization): Consider a sequence
{P,} of sets of probability laws such that for each sequence {P, } € {P,} the adaptivity
condition in Equation 1, the normality condition in Equation 3, and the variance
consistency condition in Equation 4 hold. Then CRy_, = {a € A: C(a) <c¢(1 —a)},
where ¢(1 — a) is the 1 — a-quantile of a x?>(k), is a uniformly valid confidence in-
terval for aq in the sense that

lim sup [P(ap € CRi—,) — (1 —a)| = 0.

n—00 Pep,

We remark here that in order to make the uniformity claim interesting, we should insist that the
sets of probability laws P,, nondecreasing in # (i.e., P; CP, whenever 7 <n).

Proof: For any sequence of positive constants €, approaching 0, let P, € P, be any
sequence such that

Chernozhukov * Hansen * Spindler
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|Pu(ao € CRi—s) — (1 — a)| + €, > sup|P(ag € CRi—,) — (1 — a)|.
Pep,

By the conditions in Equations 3 and 4, we have that

Pu(ao € CR_q) = P, (Clao) < c(1 — a)) = P(}*(k) < (1 —a)) =1 - a,

which implies the conclusion from the preceding display.

2.3. Valid Inference via Adaptive Estimation

Suppose that M(ag,ny) = 0 holds for ay € A. We consider an estimator & € A that is an ap-
proximate minimizer of the map a—||M(a, 9)|| in the sense that

[ M@, )

‘ < ;Iel.fl ||M(a, ﬁ)H +o<n’1/2>. (7)

To analyze this estimator, we assume that the derivatives I'1 == dw M(ag, 1) and 0,y M(e, 1)
exist. We assume that « is interior relative to the parameter space .A4; namely, for some ¢, = 0o
such that ¢, /v/n— 0,

{aeRd:Ha—a()HgEn/\/ﬁ}cA. (8)

We also assume that the following local-global identifiability condition holds: For some con-
stant ¢ > 0,

2 M(a,mp)l| = IT1 (@ = @) A Va€A, mineig(I\T) > c. 9)

Furthermore, for () = Var(\/ﬁM(ao, 7;0)), we suppose that the central limit theorem,

Qil/zﬁM(a()’ M) P, N(Os 1), (10)
and the stability condition,
[T |+ [l + [lo | <, (1)
hold.
Assume that for some sequence of positive numbers {r,} such that 7, - 0 and r,n'/? = oo, the
following stochastic equicontinuity and continuity conditions hold:
|M(a, 7) = M@, ) || + [[M(a, 7) = M(@, o)
sup - —p,0, (12)
acA i+ | [ (e 2) || + (M (e 7o) |

up HM(a, ) = M(a, ) — M(ao, 770)” 0. (13)

Jaaol<re 7172 4 | M(a, #) || + || M (e, mo) |
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Suppose that uniformly for all @ # a such that ||a — ayg|| <7, — 0, the following conditions on the
smoothness of M and the quality of the estimator % hold, as 7 — occ:

([M(a, m) — M(ag, mp) — T — ]| ||l = ao|| " =0,
V| M(a, 7)) = M(a, 1) — 9 M(a, 1) [7) = ]| =», 0, (14)
[[{owM(@, m) — oy M@0, m0) } i = mol [l = o~ =, 0.
Finally, as before, we assume that the orthogonality condition
3, M(ao, 1) = 0 (15)

holds.

The above conditions extend the analysis of Pakes & Pollard (1989) and Chen et al. (2003),
which in turn extended Huber’s (1964) classical results on Z-estimators. These conditions allow
for both smooth and nonsmooth systems of estimating equations. The identifiability condition
imposed above is mild and holds for broad classes of identifiable models. The equicontinuity and
smoothness conditions imposed above require mild smoothness on the function M and also require
that 7 is a good-quality estimator of 1,. In particular, these conditions will often require that 7
converges to 1, at a faster rate than »~ /4, as demonstrated, for example, in the next section.
However, the rate condition alone is not sufficient for adaptivity. We also need the orthogonality
condition in Equation 15. In addition, it is required that 7 € H,,, where H,, is a set whose com-
plexity does not grow too quickly with the sample size, to verify the stochastic equicontinuity
condition (see, e.g., Belloni et al. 2013a,d). In Sections 4 and 5, we use the sparsity of 1) to control
this complexity. Note that the conditions in Equations 12 and 13 can be simplified by leaving only
7, and #~1/2 in the denominator, although this simplification would then require imposing
compactness on A even in linear problems.

Proposition 2 (valid inference via adaptive estimation after selection or regularization):
Consider a sequence {P,} of sets of probability laws such that for each sequence
{P,} € {P,} the conditions in Equations 7-15 hold. Then we obtain

L1, .
Vit(a — ao) + [I{T, | Ty v/aM(ao, mo) =, 0.

In addition, for V,,:= (1“/11“1)_11“'1()1“1 (1“'11“1)‘1, we have that

lim sup sup [P(V,"/*(& — ao) €R) — P(N(0,I) eR)| = 0,
n—=00 PeP, RER

where R is a collection of all convex sets. Moreover, the result continues to apply
if V,, is replaced by a consistent estimator V,, such that V,, — V,, »p, 0 under each

sequence {P,}. Thus, CR, = [l’d +¢(l1—a/2) (l’\A/nl/n)l/z} , where ¢(1 —a/2) is

the (1 — a/2)-quantile of A(0, 1), is a uniformly valid confidence set for I'a:

lim sup P<l’ao € CR117H> -(1- a)’ =0.

700 Pep,,
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Note that the above formulation implicitly accommodates weighting options. Suppose
M° and M’ are the original theoretical and empirical systems of equations, and let =
0w M°(ag,my) be the original Jacobian. We could consider k X k positive-definite weight
matrices A and A such that

|42 + H(AZ)AH <1, HAZ _AzH 00, 16

. -1
For example, we may wish to use the optimal weighting matrix A> = Var(\/ﬁMO (o, 7)0)) ,

. . ~2 . . .. . A . .
which can be estimated by A” obtained using a preliminary estimator a° resulting from solving the
problem with some nonoptimal weighting matrix such as I. We can then simply redefine the system
of equations and the Jacobian according to

M(a, ) = AM°(a,m), M(a,m) = AM°(ar,m), T = ATY. (17)

Proposition 3 (adaptive estimation via weighted equations): Consider a sequence
{P,} of sets of probability laws such that for each sequence {P,, } € {P, } the conditions
of Proposition 2 hold for the original pair of systems of equations (M°, M°) and
Equation 16 holds. Then these conditions also hold for the new pair (M, M) in
Equation 17, so all the conclusions of Proposition 2 apply to the resulting ap-

. . . ~ . . ~ 0 -
proximate argmin estimator &. In particular, if we use A*> = Var (\/ﬁM («o, 170))

and A2 — A2 >} 0, then the large sample variance V,, simplifies to V,, = (F'll‘] )

2.4. Inference via Adaptive One-Step Estimation

We next consider a one-step estimator. To define the estimator, we start with an initial estimator
@ that satisfies, for 7, = o(n*1/4)’

Pn(deangrn)—»l, (18)

The one-step estimator & then solves a linearized version of Equation 7:
PP Rt SN
a=a- [T, TiM(@ ), (19)
where Ty is an estimator of I’y such that

Pu(|[Fr =Tl <) - 1. (20)

Because the one-step estimator is considerably more crude than the argmin estimator, we need
to impose additional smoothness conditions. Specifically, we suppose that uniformly for all @ #«
such that ||a — ag|| <7, — 0, the following strengthened conditions on stochastic equicontinuity,
smoothness of M, and the quality of the estimator 7 hold, as 7 — oco:

n'/2|| MG, 7) — M@, #1) — M(ao, mo)| =, O,
|| M@, m9) — M(ao, m) — T e — o] [l — aol| 2 < 1,
V|| M(a, 7) = M(a, m9) — 0 M(a, 107 = 0] | =», 0,

V|| {on M@, m0) — 0y Mo, m0) } i = mol| | =, 0. (21)
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Proposition 4 (valid inference via adaptive one-step estimators): Consider a sequence
{P, } of sets of probability laws such that for each sequence {P,, } € {P, } the conditions
of Proposition 2 as well as those in Equations 18, 20, and 21 hold. Then the one-step
estimator & defined by Equation 19 is first-order equivalent to the argmin estimator a:

ﬁ(& — é{) —)pn 0
Consequently, all conclusions of Proposition 2 apply to & in place of a.

The one-step estimator requires stronger regularity conditions than the argmin estimator.
Moreover, there is finite-sample evidence (e.g., Belloni et al. 2013e) that in practical problems the
argmin estimator often works much better, as the one-step estimator typically suffers from higher-
order biases. This problem could be alleviated somewhat by iterating on the one-step estimator,
treating the previous iteration as the crude start & for the next iteration.

3. ACHIEVING ORTHOGONALITY USING NEYMAN’S
ORTHOGONALIZATION

Here we describe orthogonalization ideas that go back at least to Neyman (1959) (see also Neyman
1979). Neyman’s idea was to project the score that identifies the parameter of interest onto the
orthocomplement of the tangent space for the nuisance parameter. This projection underlies semi-
parametric efficiency theory, which is concerned particularly with the case in which 7 is infinite di-
mensional (see van der Vaart 1998). Here we consider finite-dimensional 1 of high dimension (for
discussion of infinite-dimensional 7 in an approximately sparse setting, see Belloni et al. 2013a,d).

3.1. The Classical Likelihood Case

In likelihood settings, the construction of orthogonal equations was proposed by Neyman (1959),
who used them in construction of his celebrated C(«)-statistic. The C(a)-statistic, or the or-
thogonal score statistic, was first explicitly utilized for testing (and also for setting up estimation) in
high-dimensional sparse models in Belloni etal. (2013d) and Belloni etal. (2013c), in the context of
quantile regression, and Belloni et al. (2013e) in the context of logistic regression and other
generalized linear models. More recent uses of C(«)-statistics (or close variants) include those by
Voorman et al. (2014), Ning & Liu (2014), and Yang et al. (2014).

Suppose that the (possibly conditional, possibly quasi-) log-likelihood function associated with
observation w; is ¢(w;, a, B), where a € ACR? is the target parameter and 8 € BCR is the
nuisance parameter. Under regularity conditions, the true parameter values y, = (a, B,)" obey

E[aae(wia o, BO)] = 09 E[aﬁf(wu o, BO)] =0. (22’)
Now consider the moment function
M(aa 77) = E[‘//(wia o, 7))], 'Il(wia a, 77) = aag(wi’ @, B) - /J“aﬁg(wi, a, B) (23)

Here the nuisance parameter is
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!
n= (B’, vec(u)’) €BxDCR?, p=po+dpo,
where w is the d X po orthogonalization parameter matrix whose true value u, solves the equation
]aB - HJBB =0 (i-e-a Mo = ]aﬁ]p;é)a (24)

where, for y:=(c/,8')' and o= (afy BE))/’

J= —ayE[o,l(wr, Y)H =:(

Y=Yo

]aa ]aﬁ)'
Jga Jps

Note that uy not only creates the necessary orthogonality but also creates the optimal score (in
statistical language) or, equivalently, the optimal instrument/moment (in econometric language)
for inference about .’

Provided u, is well defined, we have by Equation 22 that

M(aOa 770) =0.

Moreover, the function M has the desired orthogonality property:
Oy M(ag, ) = []aﬁ — wolpss  FE[0gl(w;, g, Bo)]] =0, (25)

where Fis a tensor operator, such that Fx = dux/dvec(u)’ |u*# isad X (dpo) matrix for any vector
— 0

x in R, Note that the orthogonality property holds for Neyman’s construction even if the
likelihood is misspecified. That is, £(w;, y,) may be a quasi-likelihood, and the data need not be
i.i.d. and may, for example, exhibit complex dependence over .

An alternative way to define u, arises by considering that, under correct specification and
sufficient regularity, the information matrix equality holds and yields

J = J°=E[0twi, )0y, ¥)'|

E[daé(wi, v) 0l (Wi, y)/] E[a,,é(w,-, v)opl(wi, y)’]
E[aﬁf(wis y)@af(w,-, 7),] E[aﬁg(wia V)aﬁf(wi’ y)l]

0 0
—. aa aff
0 (U
]Ba ]BB

Hence, define uf = 24;]2!;1 as the population projection coefficient of the score for the main

Y=o

parameter d,£(wj,y,) on the score for the nuisance parameter dgl(w;, vy ):
0ut(u0s, o) = wi0ptlaws, vo) + ¢, E|edpllaws, vo)' ] = 0. (26)

We can see this construction as the nonlinear version of Frisch-Waugh’s “partialling out” from
the linear regression model. It is important to note that under misspecification, the information

*The connection between optimal instruments/moments and the likelihood/score has been elucidated in the fundamental work
of Chamberlain (1987).
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matrix equality generally does not hold, and this projection approach does not provide valid
orthogonalization.

Lemma 1 [Neyman’s orthogonalization for (quasi-)likelihood scores]: Suppose that
for each y = (a, B) € A X B, the derivative d,¢(w;, y) exists, is continuous at y with
probability 1, and obeys the dominance condition EsupyeAXBH()yZ(wi, y)H2 < 0.
Suppose that the condition in Equation 22 holds for some (quasi-) true value (ag, B)-
Then, (a) if ] exists and is finite and Jgg is invertible, the orthogonality condition in
Equation 25 holds; (b) if the information matrix equality holds, namely | = J°, then
the orthogonality condition in Equation 25 holds for the projection parameter p; in
place of the orthogonalization parameter matrix w,.

The claim follows immediately from the computations above.
With the formulations given above, Neyman’s C(«)-statistic takes the form

Cla) = |IS@)|  S(@) = 0 (@, ) yaM(a, ),

where M(a, 7)) = E,[(w;, a, 7)] as before, Q(a, n,) = Var (\/ﬁM(a, no)), and Q(a, 1) and 7
are suitable estimators based on sparsity or other structured assumptions. The estimator is then

a= arg;gf4 Cla) = argalrelf\H\/ﬁM(a, 2|

provided that O(a, 7) is positive definite for each a € A. If the conditions of Section 2 hold,
we have

Cla)»x*(d), V,Y*Vn(a—ag)~»N(0,I), (27)

where V,, = FIIQ(ao, nO)Ffl and 'y = Juo — ol o Under correct specification and i.i.d. sam-
pling, the variance matrix V,, further reduces to the optimal variance

P = (Ja ~Jusliilos)

of the first d components of the maximum likelihood estimator in a Gaussian shift experiment with
observation Z~N (b, J;1). Likewise, the result in Equation 27 also holds for the one-step esti-
mator & of Section 2 in place of & as long as the conditions in Section 2 hold.

Provided that sparsity or its generalizations are plausible assumptions to make regarding 7,
the formulations above naturally lend themselves to sparse estimation. For example, Belloni et al.
(2013e) used penalized and post-penalized maximum likelihood to estimate B, and used the
information matrix equality to estimate the orthogonalization parameter matrix u; by employing
Lasso or post-Lasso estimation of the projection equation (Equation 26). It is also possible to
estimate p,, directly by finding approximate sparse solutions to the empirical analog of the system
of equations Jo5 — pfgg = 0 using ¢;-penalized estimation, as, for example, in van de Geer et al.
(2014), or post-¢1-penalized estimation.

3.2. Achieving Orthogonality in Generalized Method of Moments (GMM) Problems

Here we consider vy, = (aj, 56)/ that solve the system of equations
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E[WZ(W,’, @0, BO)} = O’

wheren: W X AX B — Rk, A X Bisaconvexsubset of RY X RP and k> d + po is the number of
moments. The orthogonal moment equation is

M(aa 7’) = E[lp(wla a, 77)], lP(Wi, a, T’) = Mm(wia @, B) (28)
The nuisance parameter is
n= <B’,VCC(,U,)/), €BxDCRP, p=po+dk,

where w is the d X k orthogonalization parameter matrix. The true value of u is

(AP PN =1 -1 -1
Mo = (Gaﬂm -G, Gy <GBQ"’ GB) GpL >
where, for y = (/, /)’ and Yo = (aps Blo),’

Gy = yE[m(wi, o, B)]| = [uE[m(uwi, o, B)], 05 E[m(wi, a, B)]]|_ = [Gar G,

Y=%Yo Y=Yo

and
0, = Var(ﬁEn [m(wi, ao, ﬁo)])-

As before, we can interpret u, as an operator creating orthogonality while building the optimal
instrument/moment (in econometric language) or, equivalently, the optimal score function (in
statistical language).* The resulting moment function has the required orthogonality property;
namely, the first derivative with respect to the nuisance parameter when evaluated at the true
parameter values is zero:

04 Mo, m)| =[0G, FE [m(sws, an, Bo)] | =0, (29)

where Fis a tensor operator, such that Fx = dux/dvec(u)’ ]M:MO isa d X (dk) matrix for any vector
x in RK.
Estimation and inference on a can be based on the empirical analog of Equation 28:

M(ao, 7)) = B, [(wi, @, )],

where 7 is a post-selection or other regularized estimator of 7. Note that the previous framework
of (quasi-)likelihood is incorporated as a special case with

m(ws, @, B) = {aﬂawi,a)’,aﬁz(wi, ﬁ)’}'.

With the formulations above, Neyman’s C(a)-statistic takes the form

“Readers are referred to footnote 3.
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A—1/2

Cl@) = [|S@)|55 S(a) =0 " (a, #)VaM(a, 1),

where M(a, 7)) = E, [(1wi, o, )] as before, Q(a, ny) = Var(\/ﬁM(a, 1]0)), and Q(a, 7) and 7
are suitable estimators based on structured assumptions. The estimator is then

& = arg inf C(a) = arg inf HﬁM(a, ll
acA acA

provided that Q(a, ) is positive definite for each a € A. If the high-level conditions of Section 2

hold, we have that

Cla)»r, X*(d),  V,'*Vn(@ —a)wp, N(0, ), (30)

where V,, = (F;)_]Q(ao, 770)(1"1)_1 coincides with the optimal variance for GMM; here I'y =
10Ga. Likewise, the same result in Equation 30 holds for the one-step estimator & of Section
2 in place of & as long as the conditions in Section 2 hold. In particular, the variance V,, cor-
responds to the variance of the first d components of the maximum likelihood estimator in the

normal shift experiment with the observation Z~N (/o, (G;Q;ll Gy)il).

The above is a generic outline of the properties that are expected for inference using orthog-
onalized GMM equations under structured assumptions. The problem of inference in GMM
under sparsity is a very delicate matter owing to the complex form of the orthogonalization
parameters. One approach to the problem is developed in Chernozhukov et al. (2014).

4. ACHIEVING ADAPTIVITY IN AFFINE-QUADRATIC MODELS VIA
APPROXIMATE SPARSITY

Here we take orthogonality as given and explain how we can use approximate sparsity to achieve
the adaptivity property in Equation 1.

4.1. The Affine-Quadratic Model

We analyze the case in which M and M are affine in « and affine quadratic in 7. Specifically, we
suppose that for all a,

M(O[, 77) = lc‘1(77)(1 + fz(ﬂ), M(a7 77) = Fl(ﬂ)a + Fz(n),

where the orthogonality condition holds,

aﬂ'M(aO’ 770) =0,

and n+— f,-(n) and 0+ T'j(n) are affine quadratic in 7 for j = 1 and j = 2. That is, we will have
that all second-order derivatives of f‘,-(”q) and I'j(n) for j =1 and j = 2 are constant over the
convex parameter space H for 7.

This setting is both useful, including most widely used linear models as a special case, and
pedagogical, permitting simple illustration of the key issues that arise in treating the general
problem. The derivations given below easily generalize to more complicated models, but we defer
the details to the interested reader.

The estimator in this case is
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N 2 ~ ~ -1,
Ma, )| = = [F1 ()T ()] L) Ta ), (31)

G = arg min
acR?

provided the inverse is well defined. It follows that
Vi@ —ag) = [ )T ()] Ta(5) Vidi(ao, 7). (52)
This estimator is adaptive if, for I'y :==T"1 (7)),
Vn(é — ag) + [r’lrl] I /M (a0, 7o) =, O,
which occurs under the conditions in Equations 10 and 11 if

Vn(M(ao, 1) = M(ao, m9)) =p,0,  T1(7) = T'1(mo) =, 0. (33)

Therefore, the problem of the adaptivity of the estimator is directly connected to the problem of
the adaptivity of testing hypotheses about «y.

Lemma 2 (adaptive testing and estimation in affine-quadratic models): Consider a
sequence {P,} of sets of probability laws such that for each sequence {P,} € {P,},
conditions stated in the first paragraph of Section 4.1, the condition in Equation 33,
the asymptotic normality condition in Equation 10, the stability condition in
Equation 11, and the condition in Equation 4 hold. Then all the conditions of
Propositions 1 and 2 hold. Moreover, the conclusions of Proposition 1 hold, and the
conclusions of Proposition 2 hold for the estimator & in Equation 31.

4.2. Adaptivity for Testing via Approximate Sparsity

Assuming the orthogonality condition holds, we follow Belloni et al. (2012) in using approximate
sparsity to achieve the adaptivity property in Equation 1 for the testing problem in the affine-
quadratic models.

We can expand each element M,- of M = (M,-);;l as follows:

Vi (Mj(ao, 1) = Mj(ao, m9)) = T, + Ta, + T3, (34)
where
T1,j3=/ndyM;(eto, m9)' (7 — 7o),
Taji=/n(0,Mj(a0, 1) — 0y M(exo, )" (7 = 7o)
Tsji= /2™ (7 = ) 00, Mj(0) (7 = o) (35)
The term T j vanishes precisely because of orthogonality; that is,
Ty, = 0.

However, terms T, ; and T3 j need not vanish. To show that they are asymptotically negligible, we
need to impose further structure on the problem.
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4.2.1. Structure 1 (exact sparsity). We first consider the case of using an exact sparsity structure
in which ||ny||, <s and s =, >1 can depend on 7. We then use estimators 7 that exploit the
sparsity structure.

Suppose that the following bounds hold with probability 1 — o(1) under P,:

1ally s, ol =,

[ =moll, <1/ (s/mlog(pn), || = moll, S 4/ (s*/m)log(pn). (36)

These conditions are typical performance bounds that are well known to hold for many sparsity-
based estimators, such as Lasso, post-Lasso, and their extensions (see, e.g., Belloni & Chernozhukov
2011).

We suppose further that the moderate deviation bound

Ta, = ||Via(0yNtj(ao, mo) = 0y My, my) ) | Se,/log(om) (37)
holds and that the sparse norm of the second-derivatives matrix is bounded:

e, 1, (38)

sp(£ns)

Ts; = Hanan,M,-(ao)

where ¢, — co but £, = o(logn).

Following Belloni et al. (2012), we can verify the condition in Equation 37 using the moderate
deviation theory for self-normalized sums (e.g., Jing et al. 2003), which allows us to avoid making
highly restrictive sub-Gaussian or Gaussian tail assumptions. Likewise, following Belloni et al.
(2012), we can verify the second condition using laws of large numbers for large matrices acting on
sparse vectors, as in Rudelson & Vershynin (2008) and Rudelson & Zhou (2011) (see Lemma 7).
Indeed, the condition in Equation 38 holds if
<1

~

Hanan’Mi(ao) — 0n0y Mj(0)

‘0,707,/ M;(ao)

—p 0,
)

sp(Lns sp(Lns)

The above analysis immediately implies the following elementary result.

Lemma 3 (elementary adaptivity for testing via sparsity): Let {P,} be a sequence of
probability laws. Assume that (a) 1+ M(ag,n) and 1 — M(ag,n) are affine qua-
dratic in 1, and the orthogonality condition holds; (b) the conditions on sparsity and
the quality of estimation in Equation 36 hold, and the sparsity index obeys

s log(pn)” /n—0; (39)

(¢) the moderate deviation bound in Equation 37 holds; and (d) the sparse norm of the
second-derivatives matrix is bounded as in Equation 38. Then the adaptivity con-
dition in Equation 1 holds for the sequence {P,}.

We note that Equation 39 requires that the true value of the nuisance parameter sufficiently
sparse. We can relax this condition in some special cases to the requirement s log(pn)/n — 0, for
some constant ¢, by using sample-splitting techniques (see Belloni et al. 2012). However, this
requirement seems unavoidable in general.

Chernozhukov * Hansen * Spindler



Annu. Rev. Econ. 2015.7:649-688. Downloaded from www.annualreviews.org
Access provided by University College London on 11/25/15. For personal use only.

Proof: We note above that T ; = 0 by orthogonality. Under Equations 36 and 37, if
2 log(pn)* /n— 0, then T, vanishes in probability, as by Holder’s inequality

Toy < Toyllir = molly S5 log(pn)” /n =2, 0.

Also, if s log(pn)* /n — 0, then T3, vanishes in probability, as by Holder’s inequality
and for sufficiently large »

Ts; < T3]0 — moll* Sp,v/ns log(pn) /1 —»,0.

The conclusion follows from Equation 34.

4.2.2. Structure 2 (approximate sparsity). Following Belloni et al. (2012), we next consider an
approximate sparsity structure. Approximate sparsity imposes that, given a constant ¢ > 0, we can
decompose 7, into a sparse component 7 and a small nonsparse component 7":

mo = M + M), support (nj') N support (nj) = 0,

Inillo <. ol <ev/s/m[|mlly < ev/s?/n.

This condition allows for much more realistic and richer models than can be accommodated under

(40)

exact sparsity. For example, 1, needs not have any zero components at all under approximate
sparsity. In Section 5, we provide an example in which Equation 40 arises from a more primitive
condition that the absolute values {\n0/|,j =1,...,p}, sorted in decreasing order, decay at
a polynomial speed with respect to ;.

Suppose that we have an estimator 7 such that with probability 1 — o(1) under P, the following

bounds hold:
=g, S/ (s/mlog(pn), || — ||, S/ (s*/m)log(pn). (41)

This condition is again a standard performance bound expected to hold for sparsity-based esti-
mators under approximate sparsity conditions (see Belloni et al. 2012). Note that by the ap-

17llo <5

proximate sparsity condition, we also have that, with probability 1 — o(1) under P,,

1% = moll, <4/ (s/m)log(pn), |19 — molly S/ (s*/m)log(pn). (42)

We can employ the same moderate deviation and bounded sparse norm conditions as in the
previous subsection. In addition, we require the pointwise norm of the second-derivatives matrix
to be bounded. Specifically, for any deterministic vector a # 0, we require

[ononMiao)]| 1. (43)

P
pw(a)

This condition can be easily verified using ordinary laws of large numbers.

Lemma 4 (elementary adaptivity for testing via approximate sparsity): Let {P,,} be
a sequence of probability laws. Assume that (a) n — M(ap, 1) and n — M(ag, 1) are
affine quadratic in 1, and the orthogonality condition holds; (b) the conditions on
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approximate sparsity in Equation 40 and the quality of estimation in Equation 41
hold, and the sparsity index obeys

s log(pn)z/n - 0;

(¢) the moderate deviation bound in Equation 37 holds; (d) the sparse norm of the
second-derivatives matrix is bounded as in Equation 38; and (e) the pointwise norm of
the second-derivatives matrix is bounded as in Equation 43. Then the adaptivity
condition in Equation 1 holds:

Vi(M(ao, 1) ~ M(ao, mo)) —, 0.

4.3. Adaptivity for Estimation via Approximate Sparsity

We work with the approximate sparsity setup and the affine-quadratic model introduced in the
previous subsections. In addition to the previous assumptions, we impose the following conditions
on the components 0,I'y ,,; of 9,1, where m=1,...,k and [ =1,...,d. First, we need the
following deviation and boundedness condition: For each 7 and [, we need that

o1y ontitnn)| st (44)

00

“anfl,ml(no) - @nrl,mz(no)H

00

Second, we require the sparse and pointwise norms of the following second-derivatives matrices to
be stochastically bounded: For each 72 and [, we need that

where a # 0 is any deterministic vector. Both these conditions are mild. They can be verified using

OOy Tl 1, (45)

|
.

sp(Ln

anan’fl,ml H Py
pw(a)

self-normalized moderate deviation theorems and using laws of large numbers for matrices, as
discussed in the previous subsections.

Lemma 5 (elementary adaptivity for estimation via approximate sparsity): Consider
a sequence {P,} for which the conditions of Lemma 4 hold. In addition, assume that
the deviation bound in Equation 44 holds and that the sparse norm and pointwise
norms of the second-derivatives matrices are stochastically bounded as in Equation
45. Then the adaptivity condition in Equation 33 holds for the testing and estimation
problem in the affine-quadratic model.

5. ANALYSIS OF THE INSTRUMENTAL VARIABLES MODEL WITH VERY
MANY CONTROL AND INSTRUMENTAL VARIABLES

Consider the linear IV model with response variable
Yi = d§a0 + xﬁBO + & E[é‘,‘] = 0, é‘iJ_(Zi, x,-), (46)

where here and below we write w 1 v to denote Cov(w, v) = 0, y; is the response variable, and
4. .
d; = (d),_, is a p?-vector of endogenous variables, such that
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dit = xjyor + 2ibo1 + uit, Elua] =0,  wjyL(z, xi),
: : (47)
dl'pd = xﬁyopd + z;ﬁopd + Ui, E[Mipd] =0, uipdj_(zi, x,-).

Herex; = (x,-,-);.’;1 is a p*-vector of exogenous control variables, including a constant, and z; =
(zi)fil is a p*-vector of IV. We will have #i.i.d. draws of w; = (y;, d’, x!, 2})’ obeying this system
of equations. We also assume that Var(w;) is finite throughout so that the model is well
defined.

The parameter value aq is our target. We allow p* = p* >> n and p* = p% > n, but we
maintain that p?is fixed in our analysis. This model includes the case of many instruments and
a small number of controls considered by Belloni et al. (2012) as a special case, and the
analysis readily accommodates the case of many controls and no instruments (i.e., the linear
regression model) considered by Belloni et al. (2013b, 2014a) and Zhang & Zhang (2014).
For the latter, we simply set p? = 0 and impose the additional condition &; L u; for u; = (u,-/)f; ,
which together with & 1 x; implies that & 1 d;. We also note that the condition &; L x;, z;
is weaker than the condition E[g;|x;, z;] = 0, which allows for some misspecification of the
model.

We may have that z; and x; are correlated so that z; are valid instruments only after controlling
for x;; specifically, we let z; = Ilx; + ¢;, for ITap? X p¥ matrix and {; a p3-vector of unobservables
with x; L ;. Substituting this expression for z; as a function of x; into Equation 46 gives a system
for y; and d; that depends only on x;:

yi = xi00 + p}, Elp/] =0,  p] L,

di = xiVo1 + p%, E[pd] =0, pf Lxi, (48)

dipa = xi0gpa + p;.;d, E[pzf,] =0, pzf, 1 x;.

Because the dimension p = p,, of

/ / / N
Mo = (90’ (ﬁok’yok’aok)k=l>

may be larger than 7, informative estimation and inference about ag are impossible without
imposing restrictions on 1.

To state our assumptions, we fix a collection of positive constants (a, A, ¢, C), where a > 1, and
a sequence of constants §,, ™ 0 and ¢, / co. These constants will not vary with P; rather, we will
work with collections of P defined by these constants.

Condition AS 1: We assume that 7, is approximately sparse, namely that the de-

creasing rearrangement (|n, |l*)f): , of absolute values of coefficients (|n0,-\)f=1 obeys

Imol; <AI?, a>1, j=1,...,p. (49)

Given this assumption, we can decompose 7, into a sparse component 1§’ and small nonsparse
r.
component nj:
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My =g + MG, support(nf’) N support(n) = P,

[nillo <5 Nmbll, <ev/s/m |Inbll, <ev/s?/m, (50)
s:cnz%,

where the constant ¢ depends only on (a, A).

Condition AS 2: We assume that

2 log(pn)z/ngo(l). (51)
We perform inference on g using the empirical analog of theoretical equations:
M(QO, ’flo) = Os M(aa ’fl) = E[d’(wu o, ’fl)} 5 (52)

where ¢y = (tpk)iil is defined by

S
a

e (wiy a, m)=| y; — xi6 — Z(diE - xgﬁaa; (Xiyp + 28 — x19).
k=1

We can verify that the following orthogonality condition holds:

oyM(ao, m)| =0, (53)

="

This means that missing the true value 7, by a small amount does not invalidate the moment con-
dition. Therefore, the moment condition will be relatively insensitive to nonregular estimation of 7.
We denote the empirical analog of Equation 52 as

M(&’ ﬁ) =0, M(a7 77) =E, [11[11-((1, 7’)} (54)

Inference based on this condition can be shown to be immunized against small selection mistakes
by virtue of orthogonality.
The above formulation is a special case of the linear-affine model. Indeed, here we have

M(a,n) = T1(n)e +T2(n), M(e,n) =i(n)a + T2 (n),
Ii(n) =E[ (wi, m)], Ti(n)
[2(n

= En[ (wis 77)]3
FZ(n) = E[wb(wh 77)]: Fl( ) =E,

v
[ (wi, m)],
where
Uiz ws m) = = (dig = 107 ) (<l + 286 — x9%),
W (wi, m) = (yi — xi0) (x)yg + 28k — xD).
Consequently we can use the results of the previous section. To do so, we need to provide

asuitable estimator for 1,. Here we use the Lasso and post-Lasso estimators, as defined in Belloni
et al. (2012), to deal with nonnormal errors and heteroscedasticity.
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Algorithm 1 (estimation of 7): (a) For each k, do Lasso or post-Lasso regression
of dj, on x;, z; to obtain ¥, and 6. (b) Do Lasso or post-Lasso regress1on of y;on x; to
get . (c) Do Lasso or post-Lasso regression of dy, = x! Yi + 218, on x; to get Iy The

! d ,
estimator of 7, is given by 7 = (0/, (ﬁk, Yows Sk)::1>.

We then use

‘Q(a’ ﬁ) =E, [l!l(Wj, a, ﬁ)dj(wls a, f])/]
to estimate the variance matrix Q(e, m) = E, [((w;, o, mo)(wi, o, m)']. We formulate the or-
thogonal score statistic and the C(a)-statistic,

. —1/2

(@)=, " (a, ) VaM(a, 1), Cla) = [S(a)], (55)

as well as our estimator a:
~ . ~ ~ 2
= arg min H\/r_zM(a, n)H .
acA

Note also that & = arg min,e 4C(@) under mild conditions, as we work with exactly identified
systems of equations. We also need to specify a variance estimator V,, for the large sample variance

~ A~ —1 ~ ~ 1
V, of @ We set V,, = (T1(#)') Q@ 7) (T1(7))
To estimate the nuisance parameter, we impose the following condition. Let f;:= (f,,)f U
(achy )5 biz= (b)) = (v, iy d) where d; = (d),_, and dy==xbyo, + 2o vi = ()}’ =
(Si, P,- 5 P,- 5 Qi) , with ¢; = (Qik)k:l and g :=dj — aik- Let /;i: hi — E[h;].

Condition RF: (a) The eigenvalues of E[fjf/] are bounded from above by C and from
below by c. For all j and [, (b) E[hlzl] +E [|ﬁ llu + 1/E[ 7 11] <Cand E“ f ;l” <

[| ;;217121 } (c)E Hflfvle 2log3 (pn)/n <8,,and (d) s log(pn)/n < 8,. With probability

no less than 1 — 8,,, we have that (e) max;<,,; 1-12- [szlog(pn)] /n <8,, max;|(E, — E)
[7203] |+~ B)[1262] | <60 and 1) | [171] — E[fr]

The conditions are motivated by those given in Belloni et al. (2012). The current conditions are

Sp(txns

made slightly stronger to account for the fact that we use zero covariance conditions in formulating
the moments. Some conditions could be easily relaxed at a cost of more complicated exposition.

To estimate the variance matrix and establish asymptotic normality, we also need the following
condition. Let q > 4 be a fixed constant.

Condition SM: For each [ and &, (a) E[|hy|°] + E[|vy|*] <C, (b) c <E[e?|x;,2i] <C,
¢ < E[gZ|xi,2i] < C almost surely, and (c) sup,e4llell, <C.

Under the conditions set forth above, we have the following result on the validity of post-
selection and post-regularization inference using the C(a)-statistic and estimators derived from it.

Proposition 5 [valid inference in large linear models using C(«)-statistics]: Let P, be
the collection of all P such that Conditions AS 1 and 2, RF, and SM hold for the given
n. Then uniformly in P € P, we find that S(ag) » N(0,1) and C(apg) » x> (p?). As
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a consequence, the confidence set CR1_, = {a € A: C(a) < ¢(1 — a)}, where ¢(1 — a)
is the 1 — g-quantile of a y*(p?), is uniformly valid for ay, in the sense that

lim sup|P(ap€CRy_s) — (1 —a)| = 0.

n—=00 pep,

Furthermore, for V,, = (I') " Q(arg, m)(T1) ", we have that

lim sup sup P(V;]/z(& —ap) GR) - IP’(N(O,I) ER)‘ =0,

n—00PeP, ReR
where R is the collection of all convex sets. Moreover, the result continues to ap-
ply if V,, is replaced by V,. Thus, CR, = [l/d *¢(l—a/2) (I/an/n)l/l]
c(1 —a/2) is the (1 —a/2)-quantile of an N(0, 1), provides a uniformly valid

confidence set for I'ay:

, where

lim sup =0.

100 pep,,

p(z’ao € CR’l_a) ~(1-a)

The proof of Proposition 5 is given in the Supplemental Appendix (follow the Supplemental
Material link from the Annual Reviews home page at http://www.annualreviews.org).

5.1. Simulation Hlustration

In this section, we provide results from a small Monte Carlo simulation to illustrate the perfor-
mance of the estimator resulting from the application of Algorithm 1 in a small sample setting. As
comparison, we report results from two commonly used unprincipled alternatives for which
uniformly valid inference over the class of approximately sparse models does not hold. Simulation
parameters were chosen so that approximate sparsity holds but exact sparsity is violated in such
a way that we expect the unprincipled procedures to perform poorly.

For our simulation, we generate data as 7 i.i.d. draws from the model:

: 1 06 0 O
Vi = ad; + xﬁB + 2¢; &
u; 06 1 0 0
d; = xjy+ 216 + u; c ~N10, 0 0 L. 0 S
i = Ilx; +0.125¢, ' <
bd x; + 0.125¢; x, 0 0 0 s

where 2 isa p} X py matrix with 3y = (0.5)‘77’@‘ and I; is a p3 X p3 identity matrix. We set the

number of potential control variables (p¥) to 200, the number of instruments (p?) to 150, and the
number of observations (1) to 200. For model coefficients, we set « = 0, B = vy as p¥-vectors with

entries B; = y; = 1/(9v), v = 4/9 + 2251//2 for j<4 and B; =y, = 1/ () for j > 4, 5 as

a p3-vector with entries 8; = 3/j%, and IT = [Iz, 0z (px_pz)|. We report results based on 1,000
simulation replications.

We provide results for four different estimators: an infeasible oracle estimator that knows the
nuisance parameter 1, two naive estimators, and the proposed double-selection estimator. The
results for the proposed double-selection procedure are obtained following Algorithm 1 using
post-Lasso at every step. To obtain the oracle results, we run standard IV regression of y; — E[y;|x;]
on d; — E[dj|x;] using the single instrument ;8. The expected values are obtained from the model
above, and /8 provides the information in the instruments that is unrelated to the controls.
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The two naive alternatives offer unprincipled, although potentially intuitive, alternatives. The
first naive estimator follows Algorithm 1 but replaces Lasso/post-Lasso with stepwise regression
with a p value for entry of 0.05 and a p value for removal of 0.10 (stepwise). The second naive
estimator (nonorthogonal) corresponds to the use of a moment condition that does not satisfy the
orthogonality condition described previously but will produce valid inference when perfect model
selection in the regression of d on x and z is possible or when perfect model selection in the
regression of y on x is possible and an instrument is selected in the regression of d on x and z.°

All of the Lasso and post-Lasso estimates are obtained using the data-dependent penalty level
from Belloni & Chernozhukov (2013). This penalty level depends on a standard deviation that is
estimated by adapting the iterative algorithm described in Belloni et al. (2012, appendix A) using
post-Lasso at each iteration. For inference in all cases, we use standard #-tests based on conventional
homoscedastic IV standard errors obtained from the final IV step performed in each strategy.

We display the simulation results in Figure 1, and we report the median bias, median absolute
deviation, and size of 5% level tests for each procedure in Table 1. For each estimator, we plot the
simulation estimate of the sampling distribution of the estimator centered around the true pa-
rameter and scaled by the estimated standard error. With this standardization, usual asymptotic
approximations would suggest that these curves should line up with an (0, 1) density function,
which is displayed as the red solid line in the figure. We can see that the oracle estimator and the
double-selection estimator are centered correctly and line up reasonably well with the N'(0, 1)
density function, although both estimators exhibit some mild skewness. It is interesting that the
sampling distributions of the oracle and double-selection estimators are very similar, as predicted
by the theory. In contrast, both the naive estimators are centered far from zero, and it is clear that
the asymptotic approximation provides a very poor guide to the finite-sample distribution of these
estimators in the design considered.

The poor inferential performance of the two naive estimators is driven by different phenomena.
The unprincipled use of stepwise regression fails to control spurious inclusion of irrelevant
variables, which leads to the inclusion of many essentially irrelevant variables, resulting in many-
instrument-type problems (e.g., Chao et al. 2012). In addition, the spuriously included variables
are those most highly correlated to the noise within the sample, which adds an additional type of
endogeneity bias. The failure of the nonorthogonal method is driven by the fact that perfect model
selection is not possible within the present design: Here we have model selection mistakes in which
control variables that are correlated to the instruments but only moderately correlated to the
outcome and endogenous variable are missed. Such exclusions result in standard omitted variables
bias in the estimator for the parameter of interest and substantial size distortions. The additional
step in the double-selection procedure can be viewed as a way to guard against such mistakes.
Overall, the results illustrate the uniformity claims made in the preceding section. The feasible
double-selection procedure following from Algorithm 1 performs similarly to the semipara-
metrically efficient infeasible oracle method. We obtain good inferential properties, with the
asymptotic approximation providing a fairly good guide to the behavior of the estimator despite

*Specifically, for the second naive alternative (nonorthogonal), we first do Lasso regression of d on x and z to obtain Lasso
estimates of the coefficients y and 8. Denote these estimates as ¥; and §; , and denote the indices of the coefficients estimated to

~d S ad L2 . . .
be nonzero as I, = {j: %;;#0} and I, = {j:61;#0}. We then run Lasso regression of y on x to learn the identities of controls
that predict the outcome. We denote the Lasso estimates as 6, and keep track of the indices of the coefficients estimated to be

W .o . L S S ~d . .
nonzeroas I, = {j:6;;#0}. We then take the union of the controls selected in cither step I, = I, UT".. The estimator of  is then

obtained as the usual 2SLS estimator of y; on d; using all selected elements from x;, x;; such that j € I, as controls and the

. ad .
selected elements from z;, z; such that j € I_, as instruments.
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Figure 1

Histograms of the estimator from each method centered around the true parameters and scaled by the estimated
standard error from the simulation experiment: (a) oracle, (b) stepwise, (c) nonorthogonal, and (d) double
selection. The red curve is the probability density function of a standard normal, which will correspond to the
sampling distribution of the estimator under the asymptotic approximation.

working in a setting in which perfect model selection is impossible. Although simply illustrative of
the theory, the results are reassuring and in line with extensive simulations in the linear model with
many controls provided in Belloni et al. (2014a), in the IV model with many instruments and
a small number of controls provided in Belloni et al. (2012), and in linear panel data models
provided in Belloni et al. (2014b).

5.2. Empirical Illustration: Logit Demand Estimation

As further illustration of the approach, we provide a brief empirical example in which we estimate
the coefficients in a simple logit model of demand for automobiles using market share data. Our
example is based on the data and most basic strategy from Berry et al. (1995). Specifically, we
estimate the parameters from the model

log(sir) — log(so:) = aopir + xitBo + ity
Pir = itbo + Xiryo + Uit

wheres;, is the market share of product i in market ¢ with product zero denoting the outside option,
pir is the price and is treated as endogenous, x;, are observed included product characteristics, and
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Table 1 Summary of simulation results for the estimation of «

Method Median bias Median absolute deviation Size

Oracle 0.015 0.247 0.043
Stepwise 0.282 0.368 0.261
Nonorthogonal 0.084 0.112 0.189
Double selection 0.069 0.243 0.053

This table summarizes the simulation results from a linear instrumental variables model with many instruments and controls.
Estimators include an infeasible oracle as a benchmark, two naive alternatives (stepwise and nonorthogonal) described in the

text, and our proposed feasible valid procedure (double selection). Size is for 5% level tests.

zir are instruments. One could also adapt the proposed variable selection procedures to extensions
of this model such as the nested logit model or models allowing for random coefficients (see, e.g.,
Gillen et al. 2014 for an example with a random coefficient).

In our example, we use the same set of product characteristics (x variables) as used in obtaining
the basic results in Berry et al. (19935). Specifically, we use five variables in x;;: a constant, an air
conditioning dummy, horsepower divided by weight, miles per dollar, and vehicle size. We refer to
these five variables as the baseline set of controls.

We also adopt the argument from Berry et al. (1995) to form our potential instruments. Berry
et al. (1995) argued that characteristics of other products will satisfy an exclusion restriction,
Elej|xj:] = 0 for any randj # i,and thus that any function of characteristics of other products may
be used as an instrument for price. This condition leaves a very high-dimensional set of potential
instruments, as any combination of functions of {x;;},.; .-, may be used to instrument for p;;. To
reduce the dimensionality, Berry et al. (1995) used intuition and an exchangeability argument to
motivate the consideration of a small number of these potential instruments formed by taking sums
of product characteristics formed by summing over products excluding product 7. Specifically, we
form baseline instruments by taking

kit = Z Xkrts Z Xkt | s

r#i,r€ly r#ird Ly

where x; j; is the k-th element of vector x;, and Z, denotes the set of products produced by firm f.
This choice yields a vector z;; consisting of 10 instruments. We refer to this set of instruments as the
baseline instruments.

Although the choice of the baseline instruments and controls is motivated by good intuition and
economic theory, we note that theory does not clearly state which product characteristics or
instruments should be used in the model. Theory also fails to indicate the functional form with
which any such variables should enter the model. The high-dimensional methods outlined in this
article offer one strategy to help address these concerns that complements the economic intuition
motivating the baseline controls and instruments. As an illustration, we consider an expanded set
of controls and instruments. We augment the set of potential controls with all first-order inter-
actions of the baseline variables, quadratics, and cubics in all continuous baseline variables, and
a time trend that yields a total of 24 x variables. We refer to these as the augmented controls. We
then take sums of these characteristics as potential instruments following the original strategy that
yields 48 potential instruments.
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Table 2 Estimates of price coefficient

Price coefficient Standard error Number inelastic
Estimates without selection
Baseline OLS —0.089 0.004 1,502
Baseline 2SLS —0.142 0.012 670
Augmented OLS —0.099 0.005 1,405
Augmented 2SLS -0.127 0.014 874

2SLS estimates with double selection

Baseline 2SLS selection -0.185 0.014 139
Augmented 2SLS -0.221 0.015 12
selection

This table reports estimates of the coefficient on price along with the estimated standard error obtained using different sets of
controls and instruments. The rows Baseline OLS and Baseline 2SLS, respectively, provide ordinary least-squares (OLS) and
two-stage least-squares (2SLS) results using the baseline set of variables (5 controls and 10 instruments) described in the text.
The rows Augmented OLS and Augmented 2SLS are defined similarly but use the augmented set of variables described in the
text (24 controls and 48 instruments). The rows Baseline 2SLS with Selection and Augmented 2SLS with Selection apply the
double-selection approach developed in this article to select a set of controls and instruments and perform valid post-selection
inference about the estimated price coefficient in which selection occurs considering only the baseline variables. For each pro-
cedure, we also report the point estimate of the number of products for which demand is estimated to be inelastic in the column
Number inelastic.

We present estimation results in Table 2. We report results obtained by applying the method
outlined in Algorithm 1 using just the baseline set of five product characteristics and 10
instruments in the row labeled “Baseline 2SLS selection” and results obtained by applying the
method to the augmented set of 24 controls and 48 instruments in the row labeled “Augmented
2SLS selection.” In each case, we apply the method outlined in Algorithm 1 using post-Lasso in
each step and forcing the intercept to be included in all models. We employ the heteroscedasticity
robust version of post-Lasso of Belloni et al. (2012) following the implementation algorithm
provided in their appendix A. For comparison, we also report ordinary least-squares (OLS) and
two-stage least-squares (2SLS) estimates using only the baseline variables, and we report OLS and
2SLS estimates using the augmented variable set. All standard errors are conventional hetero-
scedasticity robust standard errors.

Considering first estimates of the price coefficient, we see that the estimated price coefficient
increases in magnitude as we move from OLS to 2SLS and then to the selection-based results. After
selection using only the original variables, we estimate the price coefficient to be —0.185 with an
estimated standard error of 0.014 compared to an OLS estimate of —0.089 with an estimated
standard error of 0.004 and a 2SLS estimate of —0.142 with an estimated standard error of 0.012.
In this case, all five controls are selected in the log-share on controls regression, all five controls but
only four instruments are selected in the price on controls and instruments regression, and four of
the controls are selected for the price on controls relationship. The difference between the baseline
results is thus largely driven by the difference in instrument sets. The change in the estimated
coefficient is consistent with the wisdom from the many instrument literature that the inclusion of
irrelevant instruments biases 2SLS toward OLS.
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With the larger set of variables, our post-model selection estimator of the price coefficient is
—0.221 with an estimated standard error of 0.015 compared to the OLS estimate of —0.099 with
an estimated standard error of 0.005 and 2SLS estimate of —0.127 with an estimated standard
error of 0.014. Here, we see some evidence that the original set of controls may have been overly
parsimonious as we select some terms that were not included in the baseline variable set. We also
see closer agreement between the OLS estimate and 2SLS estimate without selection, which is likely
driven by the larger number of instruments considered and the usual bias toward OLS seen in 2SLS
with many weak or irrelevant instruments. In the log-share on controls regression, we have eight
control variables selected, and we have seven controls and only four instruments selected in the
price on controls and instrument regression. We also have 13 variables selected for the price on
controls relationship. The selection of these additional variables suggests that there is important
nonlinearity missed by the baseline set of variables.

The most interesting feature of the results is that estimates of own-price elasticities become
more plausible as we move from the baseline results to the results based on variable selection with
a large number of controls. Recall that facing inelastic demand is inconsistent with profit-
maximizing price choice within the present context, so theory would predict that demand
should be elastic for all products. However, the baseline point estimates imply inelastic demand for
670 products. When we use the larger set of instruments without selection, the number of products
for which we estimate inelastic demand increases to 874, with the increase generated by the 2SLS
coefficient estimate moving back toward the OLS estimate. The use of the variable selection results
provides results closer to the theoretical prediction. The point estimates based on selection from
only the baseline variables imply inelastic demand for 139 products, and we estimate inelastic
demand for only 12 products using the results based on selection from the larger set of variables.
Thus, the new methods provide the most reasonable estimates of own-price elasticities.

We conclude by noting that the simple specification above suffers from the usual drawbacks of
the logit demand model. However, the example illustrates how the application of the methods
outlined may be used in the estimation of structural parameters in economics and adds to the
plausibility of the resulting estimates. In this example, we see that we obtain more sensible esti-
mates of key parameters with at most a modest cost in increased estimation uncertainty after
applying the methods in this article while considering a flexible set of variables.

6. OVERVIEW OF RELATED LITERATURE

Inference following model selection or regularization more generally has been an active area of
research in econometrics and statistics for the past several years. In this section, we provide a brief
overview of this literature highlighting some key developments. This review is necessarily selective
because of the large number of papers available and the rapid pace at which new papers are
appearing. We choose to focus on papers that deal specifically with high-dimensional nuisance pa-
rameter settings and note that the ideas in these papers apply in low-dimensional settings as well.
Early work on inference in high-dimensional settings focused on inference based on the so-
called perfect recovery property (see, e.g., Fan & Li 2001 for an early paper, Fan & Lv 2010
for a more recent review, and Bithlmann & van de Geer 2011 for a textbook treatment). A
consequence of this property is that model selection does not impact the asymptotic distribution
of the parameters estimated in the selected model. This feature allows one to do inference
using standard approximate distributions for the parameters of the selected model ignoring that
model selection was done. Although convenient and fruitful in many applications (e.g., signal
processing), such results effectively rely on strong conditions that imply that one will be able to
perfectly select the correct model. For example, such results in linear models require the so-called
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beta-min condition (Bithlmann & van de Geer 2011) that all but a small number of coefficients are
exactly zero and the remaining nonzero coefficients are bounded away from zero, effectively ruling
out variables that have small, nonzero coefficients. Such conditions seem implausible in many
applications, especially in econometrics, and relying on such conditions produces asymptotic
approximations that may provide very poor approximations to finite-sample distributions of
estimators as they are not uniformly valid over sequences of models that include even minor
deviations from conditions implying perfect model selection. The concern about the lack of uniform
validity of inference based on oracle properties was raised in a series of papers (e.g., Leeb & Potscher
2008a,b), and the more recent work on post—-model selection inference has been focused on offering
procedures that provide uniformly valid inference over interesting (large) classes of models that
include cases in which perfect model selection will not be possible.

To our knowledge, the first work to formally and expressly address the problem of obtaining
uniformly valid inference following model selection is by Belloni et al. (2010) who considered
inference about parameters on a low-dimensional set of endogenous variables following selection
of instruments from among a high-dimensional set of potential instruments in a homoscedastic,
Gaussian IV model. The approach does not rely on implausible beta-min conditions that imply
perfect model selection but instead relies on the fact that the moment condition underlying IV
estimation satisfies the orthogonality condition in Equation 2 and the use of high-quality variable
selection methods. Belloni et al. (2012) further developed these ideas in the context of providing
uniformly valid inference about the parameters on endogenous variables in the IV context with
many instruments to allow non-Gaussian heteroscedastic disturbances. These principles have also
been applied by Belloni et al. (2013b), who developed approaches for regression and IV models
with Gaussian errors; Belloni et al. (2014a), who covered the estimation of the parametric
components of the partially linear model, and the estimation of average treatment effects, and
provided a formal statement of the orthogonality condition in Equation 2; Farrell (2014), who
covered average treatment effects with discrete, multivalued treatments; Kozbur (2014), who
covered additive nonparametric models; and Belloni et al. (2014b), who extended the IV and
partially linear model results to allow for fixed effects panel data and clustered dependence
structures. The most recent, general approach has been provided by Belloni et al. (2013a), who
analyzed inference about parameters defined by a continuum of orthogonalized estimating
equations with infinite-dimensional nuisance parameters and developed positive results on in-
ference. The framework in Belloni et al. (2013a) is general enough to cover the aforementioned
papers and many other parametric and semiparametric models considered in economics.

Asnoted above, providing uniformly valid inference following model selection is closely related
to the use of Neyman’s C(a)-statistic. Valid confidence regions can be obtained by inverting tests
based on these statistics, and minimizers of C(«)-statistics may be used as point estimators. The use
of C(a) statistics for testing and estimation in high-dimensional approximately sparse models was
first explored in the context of high-dimensional quantile regression in Belloni et al. (2013¢,d) and
in the context of high-dimensional logistic regression and other high-dimensional generalized
linear models in Belloni et al. (2013e). More recent uses of C(a)-statistics (or close variants, under
different names) include those by Voorman et al. (2014), Ning & Liu (2014), and Yang et al.
(2014).

There have also been parallel developments based upon ex post debiasing of estimators. This
approach is mathematically equivalent to doing classical one-step corrections in the general
framework of Section 2. Indeed, although at first glance this debiasing approach may appear
distinct from that taken in the papers listed above in this section, it is the same as approximately
solving—by doing one Gauss-Newton step—orthogonal estimating equations satisfying Equation
2. The general results of Section 2 suggest that these approaches, the exact solving and one-step
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solving, are generally first-order asymptotically equivalent, although higher-order differences may
persist. To the best of our knowledge, the one-step correction approach was first employed in high-
dimensional sparse models by Zhang & Zhang (2014), who covered the homoscedastic linear
model, as well as in several of their follow-up works. This approach has been further used by van de
Geer et al. (2014), who covered homoscedastic linear models and some generalized linear models,
and Javanmard & Montanari (2014), who offered a related, although somewhat different, ap-
proach. Belloni et al. (2013d,e) also offered results on one-step corrections as part of their analysis
of estimation and inference based on the orthogonal estimating equations. We would not expect
the use of orthogonal estimating equations or the use of one-step corrections to dominate each
other in all cases, although computational evidence from Belloni et al. (2013e) suggests that the use
of exact solutions to orthogonal estimating equations may be preferable to approximate solutions
obtained from one-step corrections in the contexts they considered.

Another branch of the recent literature takes a complementary, but logically distinct, approach
that aims at doing valid inference for the parameters of a pseudo-true model that results from the
use of a model selection procedure (see Berk et al. 2013). Specifically, this approach conditions on
a model selected by a data-dependent rule and then attempts to do inference—conditional on the
selection event—for the parameters of the selected model, which may deviate from the true model
that generated the data. Related developments within this approach appear in G’Sell et al. (2013),
Lee et al. (2013), Lee & Taylor (2014), Lockhart et al. (2014), Loftus & Taylor (2014), Taylor
et al. (2014), and Fithian et al. (2014). It seems intellectually very interesting to combine the
developments of the present article (and other preceding papers cited above) with developments in
this literature.

The previously mentioned work focuses on doing inference for low-dimensional parameters in
the presence of high-dimensional nuisance parameters. There have also been developments on
performing inference for high-dimensional parameters. Belloni & Chernozhukov (2011) proposed
inverting a Lasso performance bound in order to construct a simultaneous, Scheffé-style confi-
dence band on all parameters. An interesting feature of this approach is that it uses weaker design
conditions than many other approaches but requires the data analyst to supply explicit bounds
on restricted eigenvalues. Gautier & Tsybakov (2011) and Chernozhukov et al. (2013)
employed similar ideas while also working with various generalizations of restricted eigen-
values. van de Geer & Nickl (2013) constructed confidence ellipsoids for the entire parameter
vector using sample splitting ideas. Somewhat related to this literature are the results of Belloni
etal. (2013d), who used the orthogonal estimating equations framework with infinite-dimensional
nuisance parameters and constructed a simultaneous confidence rectangle for many target
parameters in which the number of target parameters could be much larger than the sample size.
They relied on the high-dimensional central limit theorems and bootstrap results established by
Chernozhukov et al. (2013).

Most of the aforementioned results rely on (approximate) sparsity and related sparsity-based
estimators. Some examples of the use of alternative regularization schemes are available in the
many instrument literature in econometrics. For example, Chamberlain & Imbens (2004) used
a shrinkage estimator resulting from the use of a Gaussian random coefficients structure over first-
stage coefficients, and Okui (2011) employed ridge regression for estimating the first-stage re-
gression in a framework in which the instruments may be ordered in terms of relevance. Carrasco
(2012) employed a different strategy based on directly regularizing the inverse that appears in the
definition of the 2SLS estimator, allowing for a number of moment conditions that are larger than
the sample size (see also Carrasco & Tchuente 2015). The theoretical development in Carrasco
(2012) relies on restrictions on the covariance structure of the instruments rather than on the
coefficients of the instruments. Hansen & Kozbur (2014) considered a combination of ridge
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regularization and the jackknife to provide a procedure that is valid, allowing for the number of
instruments to be greater than the sample size under weak restrictions on the covariance structure
of the instruments and the first-stage coefficients. In all cases, the orthogonality condition holds,
allowing root-n-consistent and asymptotically normal estimation of the main parameter a.

Many other interesting procedures beyond those mentioned in this review have been developed
for estimating high-dimensional models (see, e.g., Hastie et al. 2009 for a textbook review).
Developing new techniques for estimation in high-dimensional settings is also still an active area of
research, so the list of methods available to researchers continues to expand. The use of these
procedures and the impact of their use on inference about low-dimensional target parameters of
interest are interesting research directions to explore. It seems likely that many of these procedures
will provide sufficiently high-quality estimates that they may be used for estimating the high-
dimensional nuisance parameter 7 in the present setting.

APPENDIX A: THE LASSO AND POST-LASSO ESTIMATORS IN THE LINEAR
MODEL

Suppose we have data {y;,x;} for individuals i = 1,...,n, where x; is a p-vector of predictor
variables, and y; is an outcome of interest. Suppose that we are interested in a linear prediction
model for y;, y; = xim + &;, and define the usual least-squares criterion function:

O(m):= % zn: (yi - xﬁn)z-

i=1

The Lasso estimator is defined as a solution of the following optimization program:

) (56)

) o AL
e - M-
U arg;rEHRI;Q(an;‘lﬁm;

where A is the penalty level, and {z,lf]-}le are covariate specific penalty loadings. The covariate
specific penalty loadings are used to accommodate data that may be non-Gaussian, hetero-
scedastic, and/or dependent and also help ensure basic equivariance of coefficient estimates to
rescaling of the covariates.

The post-Lasso estimator is defined as the ordinary least-squares regression applied to the
model I selected by Lasso:°

—~>

= support(1);) = {/e {1,... ,p}:"ﬁu‘ > 0}.
The post-Lasso estimator 7jp; is then
TpL € argmin{Q(n): n € R? such that n; = 0 for all ]%j} (57)

In other words, this estimator is OLS using only the regressors whose coefficients were estimated to
be nonzero by Lasso.

Lasso and post-Lasso are motivated by the desire to predict the target function well without
overfitting. The Lasso estimator is a computationally attractive alternative to some other classic

®We note that we can also allow the set I to contain additional variables not selected by Lasso, but we do not consider that here.
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approaches, such as model selection based on information criteria, because it minimizes a convex
function. Moreover, under suitable conditions, the Lasso estimator achieves near-optimal rates in
estimating the regression function xn. However, Lasso does suffer from the drawback that the
regularization by the ¢;-norm employed in Equation 56 naturally shrinks all estimated coefficients
toward zero, causing a potentially significant shrinkage bias. The post-Lasso estimator is meant to
remove some of this shrinkage bias and achieves the same rate of convergence as Lasso under
sensible conditions.

Practical implementation of the Lasso requires setting the penalty parameter and loadings.
Verifying good properties of the Lasso typically relies on having these parameters set so that the
penalty dominates the score in the sense that

1 Zn
= XiiE
A 1 Vi€
R > max2c¢ \/ﬁil
;i

. A
: or, equivalently, — > max2¢
n j<p n <

N/ ="

n
- Xji€i
—

1

for some ¢ > 1 with high probability. Heuristically, we would have the term inside the
absolute values behaving approximately like a standard normal random variable if we set

1 n
¥; = Var {% Zi:le’igi:| . We could then get the desired domination by setting A /(2¢\/7) large

enough to dominate the maximum of p standard normal random variables with high
probability, for example, by setting A = 2¢/n® (1 — 0.1/[2p log(n)]), where ®~!(.) denotes
the inverse of the standard normal cumulative distribution function. Verifying that this
heuristic argument holds with large p and data that may not be i.i.d. Gaussian requires careful
and delicate arguments, as by, for example, Belloni et al. (2012), who covered heteroscedastic
non-Gaussian data, or Belloni et al. (2014b), who covered panel data with within-individual
dependence. The choice of the penalty parameter A can also be refined, as done by Belloni et al.
(2011). Finally, feasible implementation requires that ; be estimated, which can be done
through the iterative procedures suggested by Belloni et al. (2012) or Belloni et al. (2014b).

APPENDIX B: PROOFS

B.1. Proof of Proposition 2
Consider any sequence {P,} in {P,}.

Step 1 (7, rate). Here we show that ||& — ag|| <7, wp — 1. We have by the identifiability con-
dition, in particular the assumption mineig(I';I'1) > ¢, that

Pn<||@ — OZOH >7’n> an<||M(&, nO)H > L(?‘n)>, i(ry)=2"1 ({\/Zrn}/\ C>.

Hence, it suffices to show that wp — 1, |[M(&,ny)|| < ¢(r4). By the triangle inequality, we obtain

B

I = |[M(&, my ) — M(@, 7)

B

IM(&, mo)|| <L + L+ 1, L =|M(a 7) — M(a, )

.

Iy = ||M(&, 9)

By the assumption in Equation 12, wp — 1, we have
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L+ L<o(){r + 15+ ||M(a, ny)| }-
Hence, we obtain
[M(@, o) (1 - 0(1)) <o()(ry+13) +1I5.
By construction of the estimator, we have

I3 <o /%) + inf [|Ni(a, 7)]| Sp, 72,
ac

which follows because

M(a, 9)| <

in M@, ) Sp,n 2, (58)

acA

where @ is the one-step estimator defined in Step 3, as shown in Equation 59. Hence, wp — 1
HM(&, 710)” SO(rn) < L(i’n),

where to obtain the last inequality we have used the assumption mineig(I';I'y) > c.

Step 2 (n~ '/? rate). Here we show that l& — ap|| Sp, 7~ /2. By the condition in Equation 14
and the triangle inequality, wp — 1, we find that

[M(&, 1) || > ||T1 (& = ao)|| = o(1)|@ — ao| > (Ve = o(1)) || (@ — @) || > Ve /2[|(& — o).

Therefore, it suffices to show that | M(a, ny)|| S, 7~ /%. We have that

B

[M(@, mo)|| <II + 11, + 115, 11, = ||M(&, i) — M(a, 9) — M(ao, )|,

115 = [ M(& )

|+ [M(ao, o)

Then, by the orthogonality d,, M(a, 1) = 0 and the condition in Equation 14, wp — 1, we find
that

1< [M(@, 7) = M@, 10) = 0y M(@, o) = mol | + oM@, o) = o
<o(1)n >+ o(1)|& — ao|
<o) 2+ o(1) (2/VE) IM(@, )

1/2

Then, by the condition in Equation 13 and by I5 <p, 7~ /%, we obtain

1 <o(){n /2 + M@, i) + M@, no)]| }

Sp, o) {12 41712 4 M@, mo)|}-

~
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Because II3 <p,n~'/> by Equation 58 and ||M(ao, no)| Sp,n "/

(1= 0(1))[|M(&, no)|| <p, n"/2.

, it follows that wp —1,

Step 3 (linearization). Define the linearization map a— L(a) by L(a):=M(ag, 1,) +
I'y (e — ap). Then we obtain

1T = [|M(é, 7) — M(é, o),

[M(a,7) - L(a)|| <

I = ||M(é,my) — T (& — ) ||,
I3 = || M(a, ) — M(&, 1) — M(a, 1) |-
Then, using the assumptions in Equations 13 and 14, conclude that

1L < |[M(@, 7) = M(@&, 16) = 0y M(@, m0) [ = ol + oM@, m0) = o]

<o(L)n™? +o(1)]& — aol,
1L, < o(1)[|a — all,

111, go(1)<n*1/2 + HM(a ?;)H +[M(4, ’flo)H)
<o(1) (n’l/z +n V2 11, + Hl"l(o? - aO)H).

Conclude that wp — 1, as HF;Fl H <1 by the assumption in Equation 11,

<p, 0(1) <n71/2 +la— ao||> = o(n’1/2>.

[M(&, 7) - L(a)

Also consider the minimizer of the map a— HI:(a)H, namely,
RN VAN
o =ay— <F1r1> F1M(a0’ M)

which obeys ||\/7(@ — ag)|| <p, 7~ /> under the conditions of the proposition. We can repeat the
argument above to conclude that wp—1, HM a, 1) @)|| Sp, 0(/?). This implies, as
HL )|| Sp, 7712, that

M@, 9)|| <p,n "2 (59)
This also implies that HIA,(d)H = HI:(H)H +op, (n1?), as |‘£(E)|‘ < ||i(&)|| and

IL@)]| = or, (n72) <[|N(@, )] < M@, #)]| + o0 (n ) = [[L@)| + or, (n).

L(a) H2+Op" (n~1), so that

The former assertion implies that ||I:(d)

L)~ |L@)| = Hn (@ — a)sz op, (1),

from which we can conclude that \/n | & — @| —p, 0.
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Step 4 (conclusion). Given the conclusion of the previous step, the remaining claims are
standard and follow from the continuous mapping theorem and Lemma 8.

B.2. Proof of Proposition 3

We have wp —1 that, for some constants 0 <u <[ <0, [||x| <||Ax|| <u|x| and[|x| <
||Ax|| < u|x||. Hence, we obtain

| AMC (a, ) — AMC(at, )|

+ |AM? (a, 7)) — AM® (e, 1) ||

Sllp T
we o+ || AMC(a, %) + [ AM® (@, 7o)
| [ @)~ MG )|+ M, ) MO (e )|
S sup— =

acal (ru/D) + | M® (e, D) + [|M° (e, m0) |
Bl

IV )

The proof that the rest of the conditions hold is analogous and is therefore omitted.

B.3. Proof of Proposition 4

Step 1. We define the feasible and infeasible one-step estimators
An A INIPSRN D
&=a-FM@m), F= (M) T,
p— ~ g 71 /
a=ag— FM(ag, my), F= (Flﬂ) I.
We deduce by Equations 11 and 20 that
Fl[Se, 1 IFTy =1 Sy rms - [|F = F <o, 7
Step 2. By Step 1 and by the condition in Equation 21, we have that

D = [|F¥I(a, ) — F¥i(a, m0) — 1@  a)
< || E[J|M(@&, #) — M(ao, mo) = T'1 (@ — )|
M(@, 1) = M(@ 1) — M(ao, mo)[| + D1 Sp,0 (") + Dy,

~Py
where Dy := ||M(&, 1) — T'1 (& — ao)]|-

Moreover, we have Dy <1Vy + IV, + V3, where wp — 1 by the condition in Equation 21 and
2 =o(n"1/?)
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IVy= HM(&, no) — I'i(a@ — ao)H < H& - aon <= o(n*1/2>,
1V2:= || M(@ %) = M(@ o) — 0y M(@, m0)[i = mol|| S0 (n172),
1Vs:= [0y M(@, )i — ol | S 0 (7 172).

Conclude that 7'/2D —p, 0.

Step 3. We have by the triangle inequality and Steps 1 and 2 that

vn

& — aH </n||[(I - FT1) (@ — ao)|| + vau| (F — F)M(ato, m)|| + v/#D
< || (1= FU) ||lla = aol| + [[F ~ Fl||VaM(@o, 7o) + v2D
S, Vrry+o(1) = o(1).

Thus, we have \/ﬁHd - EH —p, 0,and \/EHEV - 61“ —p, 0 follows from the triangle inequality and
the fact that \/z|j&@ — @|| —p, 0.

B.4. Proof of Lemma 2

The conditions of Proposition 1 are clearly satisfied, and thus the conclusions of Proposition 1
immediately follow. We also have that, for I'y = T'1(%),

Vi@ — ag) = —EvaM(ag, 7), F = (f;fl)’lfl,
V(@ — ag)= — Ey/nM(ag, my), F= (r’lrl)qu.

We deduce by Equations 11 and 33 that HFH <p, 1 and HF — F|| —p, 0. Hence, we have by the
triangle and Holder inequalities and the condition in Equation 33 that

Jalla ~all <]

FH\/E”M(&O, ) —M(ao, 770))” + ||1A3—F||\/1;||M(010, 770)” -, 0.

The conclusions regarding the uniform validity of inference using & of the form stated in the
conclusions of Proposition 2 follow from the conclusions regarding the uniform validity of in-
ference using @, which follow from the continuous mapping theorem, Lemma 8, and the assumed
stability conditions in Equation 11. This establishes the second claim of the lemma. Verification of
the conditions of Proposition 2 is omitted.

B.5. Proof of Lemmas 3 and 4
The proof of Lemma 3 is given in the main text. As in the proof of Lemma 3, we can expand:
Va(Mj(ao, 7) = Mj(ao, m9)) = Trj + Ta; + T3 (60)

where the terms (Tl),-)?:1 are as defined in the main text. We can further bound T3 as follows:

ngi = \/’;) (ﬁ - 776”)/67,07,/1\7[,-(0(0) (ﬁ - 776”) 5
T3 <T3; + Taj, , ) (61)
Tyj:= \/ﬁ)noanan’Mi(ao)”’?B)‘
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Then T;;=0 by orthogonality, T>;—p,0 as in the proof of Lemma 3. Given that
s2log(pn)* /n— 0, T73': vanishes in probability because, by Holder’s inequality and for sufficiently
large n,

_ 2
T3, < VT, || =it ||” S vslog(pm) /m—p, 0.
Also, if s? log(pn)* /n— 0, T4 ; vanishes in probability because

sy < Vi 0,0 M ao) pr(ﬂ' Jlmoll* Se, vinslog(pr) /e, 0,
0

where the inequalities follow by Holder’s inequality and Equation 43. The conclusion follows
from Equation 60.

B.6. Proof of Lemma 5

Form=1,...,kandl =1,...,d, wecan bound each element fl)ml(n) of matrix I'; (n) as follows:

Ty = ‘anrl,ml(no)l(”fl —mg)

5

)

~ !
Ty = ‘ <anrl,ml(7]0) - anrl,ml(”’lo)) (1 —my)

4
Fl,ml(ﬁ) - rl,ml(no)’ < Z Tk,mla
k=1

T3 = ‘ (n— ng)lanan/fl,ml(ﬁ —n8)|s

R i
T4,ml = ‘7’0 anan’rl,mITIB ‘ .

Under the conditions in Equations 44 and 45, we have that wp — 1,

Tt <[00 T 1 (m0)|| N5 = molly Sp, /2 log(pn) /n— 0,
Topm < Hanf1,ml(7lo) - 0nF1,mz(no)Hmllf7 — olly Sp,y/s* log(pn) /n— 0,

Ty [ona i, || S0, slog(pn)/n—0,

Taot < || 000y Ditl| |70 Sp, slog(pn) /n— 0.
()
0

pw

The claim follows from the assumed growth conditions, as d and k are bounded.

APPENDIX C: KEY TOOLS

Let ® and @' denote the distribution and quantile function of A'(0, 1). Note that, in particular,

O (1 —a) </2log(a) for all ac (0, 1/2).

Lemma 6 (moderate deviation inequality for the maximum of a vector): Suppose that
n n . . .
Sj= Zizl Uji/+\/ Zi:l Uizj’ where Uy are independent random variables across i

with mean zero and finite third-order moments. Then, we obtain
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A
P({E?g; |S;| >~ 1 - 'y/2p)) (1 + 63)
where A is an absolute constant, provided for ¢, > 0,

(ty )
/6 LM 2t

0<d ' (1-y/(2p)) <=~ min M —

0, 1<j<p 1 Y 1/3°
- O

This result is essentially due to Jing et al. (2003). The proof of this result, given by Belloni et al.
(2012), follows from a simple combination of union bounds with their result.

Lemma 7 (laws of large numbers for large matrices in sparse norms): Lets,,, p,,, R, and
¢, be sequences of positive constants such that ¢,, — oo but ¢, /logn — 0 and ¢; and ¢,
be fixed positive constants. Let (x;)7_; be i.i.d. vectors such that ||E[x;x/] Hsp(s,, logn) < €15
and either one of the following holds: (2) x; is a sub-Gaussian random vector
with sup, < | 7| o S €2 where ||-[|,, p denotes the i,-Orlicz norm of a random
variable, and s,(log#)(log(p, v n))/n—0, or (b) ||xi|l,, <k. almost surely and
kﬁsn(log4 n)log(p, v n / )/n—0. Then there is o(1) term such that with probability

1-o0(1), HIE,,[x,xZ] — Elx;x! H <o(1), HE [x; xl]H <c1 +o(1).

sp(suln) sp(suln)

Under (a), the result follows from theorem 3.2 of Rudelson & Zhou (2011), and under (b), the
result follows from Rudelson & Vershynin (2008), as shown in the supplemental material of
Belloni & Chernozhukov (2013).

Lemma 8 (useful implications of the central limit theorem in R”): Consider a sequence
of random vectors Z,, in R” such that Z,,« Z = N(0, I,,). The elements of the se-
quence and the limit variable need not be defined on the same probability space. Then
we obtain

lim sup|P(Z,€R) —P(ZeR)| =0,

n—00 ReR

where R is the collection of all convex sets in R™.

Proof: Let R denote a generic convex set in R”. Let R¢ = {z€R”:d(z, R) <€} and
R~¢ = {z€R:B(z, €) C R}, where d is the Euclidean distance and B(z, €) = {y e R™:
d(y, z) <€}. The set R may be empty. By theorem 11.3.3 in Dudley (2002), we find
that €,:=p(Z,,Z) — 0, where p is the Prohorov metric. The definition of the metric
implies that P(Z, € R) <P(Z € R®) + €,. By the reverse isoperimetric inequality
(Chen & Fang 2011, proposition 2.5), we obtain [P(Z € R) — P(Z € R)| <m'/%€,

Hence, P(Z, € R) <P(Z€R) + €,(1 + m'/?). Furthermore, for any convex set R, we
find that (R7¢)* C R (interpreting the expansion of an empty set as an empty set).
Hence, for any convex R, we have P(Ze€ R %) <PP(Z, € R) + €, by definition of
Prohorov’s metric. By the reverse isoperimetric inequality, we obtain |[P(Z € R™) —
P(Z € R)| <m'/?¢,. Conclude that P(Z, € R) >P(Z € R) — €,(1 + m'/?).
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